CopyControl ${ }^{\text {TM }}$ pCC1BAC ${ }^{\text {TM }}$ (BamH I Cloning-Ready) Vector CopyControI ${ }^{\text {TM }}$ pCC1BAC ${ }^{\text {TM }}$ (Hind III Cloning-Ready) Vector CopyControl ${ }^{\text {TM }}$ pCC1BAC ${ }^{\text {TM }}$ (EcoR I Cloning-Ready) Vector

Cat. Nos. CBAC311B, CBAC311H, and CBAC311E

The CopyControl ${ }^{\text {TM }}$ pCC1BAC ${ }^{\text {TM }}$ Vector is based on an innovative technology originally developed in the laboratory of Dr. Waclaw Szybalski ${ }^{1}$ and optimized at EPICENTRE. ${ }^{2}$ The vector has two origins of replication - a singlecopy E. coli F-factor replicon and a high-copy origin of replication called "oriN". Initially, replication of CopyControl clones can be controlled by the F-factor replicon so the vector is present at one copy per cell. Maintaining clones at single copy ensures insert stability and allows cloning of toxic gene products (Figure 1, page 2).

Initiation of replication from oriV requires the trfA gene product. CopyControl Vectors use a specifically engineered E. coli host strain, TransforMax ${ }^{\text {TM }}$ EPI $300^{\text {TM }}$ (available separately), which contains a mutant trfA gene under tight control of an inducible promoter. Addition of the CopyControl Induction Solution to the growth medium induces expression of trfA and subsequent amplification of the clone to high-copy number. Induction of CopyControl BAC clones from singlecopy up to $10-20$ copies per cell greatly improves the yield and purity of BAC DNA for sequencing, fingerprinting and other applications.

The CopyControl pCC1BAC Vector is derived from pBeloBAC11 ${ }^{3}$ and EPICENTRE's pIndigo-BAC-5. The vector has been linearized at a unique restriction enzyme recognition site (BamH I, Hind III or EcoR I), dephosphorylated, and highly purified to ensure very low background. Features of the vector include:

- Chloramphenicol-resistance as an antibiotic selectable marker.
- E. coli F factor-based partitioning and singlecopy number regulation system.
- oriV high-copy origin of replication.
- Primer binding sites for BAC-end sequencing
- Not I sites surrounding the BamH I, Hind III and EcoR I cloning sites.
- Bacteriophage P1 loxP site for Cre-recombinase cleavage.

Product Specifications

Storage: Store at $-20^{\circ} \mathrm{C}$.
Size: 375 ng @ 25 ng/미 15 I in TE Buffer (10 mM Tris-HCl, pH 7.5; 1 mM EDTA)

Quality Control: Cloning-ready preparations of the CopyControl pCC1BAC Vector yield $>10^{7}$ cfu/ $\mu \mathrm{g}$ of Control Insert DNA when transformed into TransforMax EPI300 Electrocompetent E. coli. Greater than 95% of the colonies are recombinant clones.

Protocols: See references 4-7 for protocols on BAC cloning and working with BAC clones. Product literature for the CopyControl BAC Cloning Kits also provides thorough procedures for constructing a BAC library. An electronic copy is available for downloading at the following URL: http://www.epicentre.com/item.asp?id=380 and following the "protocol" hyperlink.

Related Products: The following products are also available:
C CopyControl ${ }^{\text {TM }}$ BAC Cloning Kits
\square Fast-Link ${ }^{\text {TM }}$ DNA Ligation Kits
\square Colony Fast-Screen ${ }^{\text {TM }}$ Kit (Size Screen)
—BAC-Tracker ${ }^{\text {TM }}$ Supercoiled DNA Ladder
—EZ::TN ${ }^{\text {TM }}$ <oriN/KAN-2> Insertion Kit
\square GELase ${ }^{\text {TM }}$ Gel-Digesting Preparation
Plasmid-Safe ${ }^{\text {TM }}$ ATP-Dependent DNase

References:

1. Wild, J. et al., (2002) Genomic Research 12, 1434.
2. EPICENTRE Forum (2002) 9 (1), 1.
3. Hurowitz, E.H. et al., (2000) DNA Research 7 (2), 1.
4. Birren, B. et al., (1999) Bacterial Artificial Chromosomes in Genome Analysis: A Laboratory Manual, CSH Press, New York, v. 3, 241.
5. http://www.tree.caltech.edu/protocols/ BAC_lib_construction.html.
6. http://hbz.tamu.edu/bacindex.html.
7. http://www.genome.clemson.edu.

How the CopyControl Cloning System Works:

1. Ligate the DNA interest into the linearized and dephosphorylated CopyControl pCC1 CloningReady Vector.
2. Transform TransforMax EPI300 Electrocompetent E. coli and select clones on LB-chloramphenicol plates. Under these conditions, the trfA gene is repressed and the clones are maintained as single copy.
3. Pick individual CopyControl clones from the plate and grow in culture.
4. Add the CopyControl Induction Solution to induce expression of the trfA gene product and subsequent amplification of the clones to high copy number.
5. Purify plasmid DNA for sequencing, fingerprinting, subcloning or other applications.

Figure 1. Overview of the CopyControl ${ }^{\text {TM }}$ System.

Clones selected and maintained as single copy to ensure stability.

Clones are induced to high-copy number for high yields of DNA for sequencing, fingerprinting, in vitro transcription, etc.

Important: An E. coli host carrying an inducible trfA gene (such as TransforMax EPI300 E. coli or phage T1-resistant TransforMax EPI300-T1 ${ }^{R}$ E. coli) is required for amplification of the CopyControl BAC clones to high-copy number. A regulated trfA gene is not present in most lab strains of E. coli. We can not guarantee clone amplification results using any E. coli strain other than TransforMax EPI300 E. coli, which are available separately.

Figure 2. CopyControl ${ }^{\text {TM }}$ pCC1BAC ${ }^{\text {TM }}$ Vector.

Note: Not all restriction enzymes that cut only once are indicated above.
See page 5 for complete restriction information.
Primers are not drawn to scale.

$\mathrm{FP}=\mathrm{pCC1} 1^{\mathrm{TM}} / \mathrm{pE}$ piFOS ${ }^{\text {TM }}$ Foward Sequencing Primer RP $=\mathrm{pCC} 1^{\text {TM }} / \mathrm{pEpiFOS}{ }^{\text {TM }}$ Reverse Sequencing Primer T7 = T7 Promoter Primer

pCC1BAC Sequencing Primers and Vector Data

pCC1 / pEpiFOS-5 Sequencing Primers

Primers are available separately:
pCC1 ${ }^{\text {TM }} / \mathrm{pEpiFOS}^{\text {TM }}$ Forward Sequencing Primer Cat. No. F5FP010 5^{\prime} GGATGTGCTGCAAGGCGATtAAGTTGG 3'................................ 1 nmol supplied in TE Buffer at 50 MM
pCC1 ${ }^{\text {TM }} / \mathrm{pEpiFOS}{ }^{\text {TM }}$ Reverse Sequencing Primer
5' CTCGTATGTTGTGTGGAATTGTGAGC 3' \qquad 1 nmol supplied in TE Buffer at 50 CM

Note: The sequence of the pCC1 / pEpiFOS Forward and Reverse Primers do not function well as IRD800-labeled sequencing primers. We recommend using the T7 and pCC1/pEpiFOS RP-2 Primers instead of the pCC1 / pEpiFOS Forward and Reverse Primers respectively, for this purpose.
pCC1 ${ }^{\text {TM }} / \mathrm{pEpiFOS}{ }^{\text {TM }}$ RP-2 Reverse Sequencing Primer 5^{\prime} TACGCCAAGCTATtTAGGTGAGA 3^{\prime}

Orientation for BAC End-Sequencing

The following is the nucleotide sequence of pCC1BAC (bases 230-489) from the pCC1 / pEpiFOS Forward Sequencing Primer (230-256) to the pCC1 / pEpiFOS Reverse Sequencing Primer (489-464) encompassing the T7 RNA polymerase promoter (311-330) the EcoR I site (332-337), the BamH I site (353-358) and the Hind III site (383-388).

$$
\begin{array}{llll}
230 & \text { GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT TTTCCCAGTC } \\
280 & \text { ACGACGTTGT AAAACGACGG CCAGTGAATT GTAATACGAC TCACTATAGG } \\
330 & \text { GCGAATTCGA GCTCGGTACC CGGGGATCCT CTAGAGTCGA CCTGCAGGCA } \\
380 & \text { TGCAAGCTTG AGTATTCTAT AGTCTCACCT AAATAGCTTG GCGTAATCAT } \\
430 & \text { GGTCATAGCT GTTTCCTGTG TGAAATTGTT ATCCGCTCAC AATTCCACAC } \\
480 &
\end{array}
$$

An electronic copy of the pCC1BAC sequence is available for downloading at our Web site at http://www.epicentre.com/technical.htm or can be requested via e-mail (techhelp@epicentre.com) or by calling Technical Service.

Restriction Enzymes that cut the pCC1BAC Vector 1 to 3 times:

Enzyme	Sites	Location	Enzyme	Sites	Location	Enzyme	Sites	Location
Acc65 I	2	344,5196	BsrG I	1	3769	PpuM I	2	1716, 7847
Acll	2	1121,5588	BssH II	2	5453, 5997	Psil	2	2915, 3111
Afe I	1	4555	BssSI	3	5146, 6796, 7359	PspOM I	1	6957
Afll	2	6597,6837	BstAP I	3	95, 1933, 7634	PstI	3	375, 4014, 5555
Afl III	3	4962, 5136, 7471	BstE II	1	7593	Pvul	2	188, 5862
Age I	3	3816, 5046, 5939	BstXI	1	5074	Sac II	1	2472
Ahd I	1	7475	BstZ17 I	1	1832	Sall	3	365, 645, 7651
Ale I	1	6532	Bts I	2	558,5548	Sap I	2	4592, 5802
Apal	1	6961	Dra III	2	1933, 7812	Sbfl	2	375,4014
ApaBI	3	96, 1934, 7635	Eco47 III	1	4555	Scal	1	793
ApaL I	1	87	EcoN I	1	3458	SexA I	1	7589
BamH I	1	353	EcoO109 I	2	1716,7847	Sfil	1	639
Bbs I	3	5039, 5228, 6105	EcoR I	1	332	Sfol	1	147
Bciv I	1	2486	EcoR V	2	4117,4346	SgrA 1	3	2481, 5046, 6203
Bcll	1	5787	Fsel	1	2478	Sim I	2	5160, 7847
Bgl	3	639, 3160, 7609	Fsp I	3	167, 3741, 7567	Smal	3	350,639, 3482
Bgl II	2	3135, 5202	Hind III	1	383	SnaBI	1	5620
Blp I	1	4468	Hpal	1	7618	Spel	1	6711
Bmg I	3	2613, 5026, 7786	KpnI	2	348, 5200	Sphl	1	381
Bmr I	3	268, 7007,7136	Mfe I	1	4976	Srf I	1	639
Bpu10I	3	1434, 3916, 5111	Msc I	3	943, 2623, 5407	Sse8647 I	1	1716
Bsal	1	6799	Nar I	1	146	Stul	1	3163
BsaBI	2	7743,7827	Ncol	2	905,7176	Tat I	3	77, 791, 3769
BsaH I	1	146	Nde I	2	94,4994	Tli I	1	2380
BseY I	3	2401, 5879, 6636	Not I	2	2,631	Tth111I	1	5260
Bsm I	2	812, 1219	Nru I	2	1632,7663	Xbal	2	359, 3181
BsmB I	3	982, 1535, 3931	Nsp I	3	381, 1819, 7475	Xcm I	1	2676
BspEI	2	1210,5756	PaeR7I	1	2380	Xhol	1	2380
BspLU11 I	1	7471	Pcil	1	7471	Xmal	3	348, 637, 3480
BsrBI	3	464, 1648, 2270	PfiF I	1	5260			

Restriction Enzymes that cut the pCC1BAC Vector 4 or more times:

Acc I	BfuA I	Bsr I	Dde I	Hae II	HpyCH4 V	Nae I	Sau3AI	Tsp4C I
Acil	Bme1580 I	BsrD I	Dpn I	Hae III	Mae II	Ncil	Sau96 I	Tsp509 I
Alu I	BsaAI	BsrF I	Dral	Hhal	Mae III	NgoM IV	ScrF I	TspRI
Alw I	BsaJI	BssKI	Drd I	Hinc II	Mbol	Nla III	SfaN I	Xmn I
AlwN I	BsaW I	BstDS I	Dsal	Hinf I	Mbo II	Na IV	Sfc I	
Apol	BsiE I	BstF5 I	Eael	HinP I	Mly I	PfiM I	Sml I	
Asel	BsiHKA I	BstN I	Eag I	Hpa II	Mnl I	Ple I	Sspl	
Aval	Bsll	BstU I	Ear I	Hph I	Mse I	PshAI	Sty 1	
Avall	BsmA I	BstY I	Faul	Hpy188 I	Msl I	PspG I	TaqI	
BanI	Bsp1286 I	Btg 1	Fnu4H I	Hpy99 I	Msp I	Pvu Il	Tfil	
Ban II	BspH I	Cac8 1	Gdi II	HpyCH4 III	MspA1 I	Rsal	Tse I	
Bfal	BspM I	CviJ I	Hael	HpyCH4 IV	Mwo I	Sacl	Tsp45 I	

Restriction Enzymes that do not cut the pCC1BAC Vector:

Aat II	Avr II	BsiW I	Bsu36 I	Nhe I	Pme I	SanD I
Asc I	BbvC I	BspD I	Cla I	Nsi I	Pml I	Swa I
AsiS I	BrbB I	BstB I	Mlu I	Pac I	Rsr II	

